31 research outputs found

    Functional Liftings of Vectorial Variational Problems with Laplacian Regularization

    Full text link
    We propose a functional lifting-based convex relaxation of variational problems with Laplacian-based second-order regularization. The approach rests on ideas from the calibration method as well as from sublabel-accurate continuous multilabeling approaches, and makes these approaches amenable for variational problems with vectorial data and higher-order regularization, as is common in image processing applications. We motivate the approach in the function space setting and prove that, in the special case of absolute Laplacian regularization, it encompasses the discretization-first sublabel-accurate continuous multilabeling approach as a special case. We present a mathematical connection between the lifted and original functional and discuss possible interpretations of minimizers in the lifted function space. Finally, we exemplarily apply the proposed approach to 2D image registration problems.Comment: 12 pages, 3 figures; accepted at the conference "Scale Space and Variational Methods" in Hofgeismar, Germany 201

    Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    Get PDF
    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented.Comment: Resubmitted to Physics in Medicine and Biology. Text has been modified according to referee comments, and typos in the equations have been correcte

    A combined first and second order variational approach for image reconstruction

    Full text link
    In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler's elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images -- a known disadvantage of the ROF model -- while being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure

    An introduction to total variation for image analysis

    No full text
    These notes address various theoretical and practical topics related to Total Variation-based image reconstruction. They focuse first on some theoretical results on functions which minimize the total variation, and in a second part, describe a few standard and less standard algorithms to minimize the total variation in a finite-differences setting, with a series of applications from simple denoising to stereo, or deconvolution issues, and even more exotic uses like the minimization of minimal partition problems

    A continuous max-flow approach to Potts model

    No full text
    Abstract. We address the continuous problem of assigning multiple (unordered) labels with the minimum perimeter. The corresponding discrete Potts model is typically addressed with a-expansion which can generate metrication artifacts. Existing convex continuous formulations of the Potts model use TV-based functionals directly encoding perimeter costs. Such formulations are analogous to ’min-cut ’ problems on graphs. We propose a novel convex formulation with a continous ’max-flow ’ functional. This approach is dual to the standard TV-based formulations of the Potts model. Our continous max-flow approach has significant numerical advantages; it avoids extra computational load in enforcing the simplex constraints and naturally allows parallel computations over different labels. Numerical experiments show competitive performance in terms of quality and significantly reduced number of iterations compared to the previous state of the art convex methods for the continuous Potts model.
    corecore